Low-Dose Exposure and Immunogenicity of Transgenic Maize Expressing the Escherichia coli Heat-Labile Toxin B Subunit
نویسندگان
چکیده
BACKGROUND Transgenic maize, which produces the nontoxic B subunit of the Escherichia coli heat-labile toxin (LT-B) in seed, has proven to be an effective oral immunogen in mice. Currently, there is considerable concern over accidental consumption of transgenic maize expressing LT-B by humans and domestic animals. We have yet to define nonimmunogenic levels of transgenic LT-B when ingested. OBJECTIVES Our goal in this study was to determine the highest dose of LT-B orally administered in mice that does not result in a measurable immune response. We defined an immune response as specific serum or mucosal IgG or IgA significantly greater than background after three feedings (0.0002-20 mug) or a priming response induced by the intermittent feeding. METHODS We fed transgenic maize pellets on days 0, 7, 21, and 49 and collected serum and fecal samples weekly. Serum was analyzed for LT-B-specific IgG and IgA, and feces was analyzed for LT-B-specific IgA. RESULTS We observed a dose-dependent anti-LT-B antibody response with high specific antibody concentrations in groups fed high doses (0.2, 2, 20 mug) of LT-B maize. Mice fed 0.02 mug LT-B demonstrated immune priming in 62.5% of the animals. Mice that were fed </= 0.002 mug LT-B showed no increase in specific antibody nor did they demonstrate immune priming, indicating that 0.002 mug LT-B was the highest nonimmunogenic dose tested. CONCLUSION Our results demonstrate that LT-B derived from transgenic maize is immunogenic at nanogram levels when orally administered to mice.
منابع مشابه
Evaluation of low dose exposure and immunogenicity of transgenic maize expressing the Escherichia coli heat-labile toxin B subunit when fed intermittently and daily
Chapter 1: Introduction and Literature Review Chapter 2: Low dose exposure and immunogenicity of transgenic maize expressing the Escherichia coli heat-labile toxin B subunit Chapter 3: Immunogenicity of daily and intermittent oral administration of transgenic maize expressing the Escherichia coli heat-labile toxin B subunit Chapter 4: Discussion Acknowledgements iii
متن کاملImmunogenicity of a Fusion Protein Comprising Coli Surface Antigen 3 and Labile B Subunit of Enterotoxigenic Escherichia coli
Background: Enterotoxigenic Escherichia coli (ETEC) strains are the major causes of diarrheal disease in humans and animals. Colonization factors and enterotoxins are the major virulence factors in ETEC pathogenesis. For the broad-spectrum protection against ETEC, one could focus on colonization factors and non-toxic heat labile as a vaccine candidate. Methods: A fusion protein is composed of a...
متن کاملESCHERICHIA COLI HEAT-LABILE TOXIN B SUBUNIT: CONSTRUCTION AND EVALUATION OF PLASMIDS PROVIDING CONTROLLED HIGH LEVEL PRODUCTION OF THE PROTEIN
With the plasmid DNA from a clinical isolate of enterotoxigenic Escherichia coli (ETEC) H 10407 as template, PCR-mediated cloning of the sequence encoding the heat-labile toxin B subunit (L T -B) has been carried out. Then this sequence was recloned into the pTrc 99A and pET23a expression vectors to give the pJasmids pTRCLTB and pETLTB, respectively. After induction, the former plasmid provides...
متن کاملConstruction and Expression of a Fused Gene for B Subunit of the Heat-Labile and a Truncated Form of the Heat-Stable Enterotoxins in Escherichia coli
Elaboration of different toxins by enterotoxigenic E. coli has been considered as one of the main virulence factors contributing to the manifestation of disease caused by these microorganisms. Various strategies have been employed to raise antibodies against these toxins as a line of defense. In this study, the 3’ terminus of the gene that codes for the binding subunit of the heat-labile entero...
متن کاملEvaluation of the Effect of Promoter Type on the Immunogenicity of the Live Recombinant Salmonella Vaccines Expressing Escherichia Coli Heat-labile Enterotoxins (LTB)
Enterotoxigenic Escherichia coli (ETEC)-induced diarrhoea is the second most commoncause of death in children in the developing countries. Heat labile toxin (LT) is responsible forETEC-induced diarrhoea. In the present study, a novel live ETEC vaccine based on subunitB of LT (LTB) expression in attenuated PhoPc Salmonella strain was developed. Herein, weaimed to compare the in-vitro activity of...
متن کامل